Орбитата на Земята около Слънцето винаги се променя. Тази промяна не е значителна от година на година, но с течение на времето гравитационните влияния на Луната и други планети карат орбитата на Земята да се колебае. Това засяга и климата на Земята.
Например постепенното изместване на земната орбита и променящият се наклон на земната ос води до климатичните цикли на Миланкович. Така че, ако искате да разберете палеоклимата или промяната на климата на Земята през геоложкото време, ще ви помогне разбирането на това каква е била орбитата на Земята в далечното минало, пише Universe Today.
За щастие Нютоновата механика и законът за гравитацията работят както назад във времето, така и напред. Можем да използваме Нютоновата динамика, за да прогнозираме затъмненията и траекториите на космическите апарати към външната част на Слънчевата система, но можем също да я използваме, за да върнем часовника назад и да картографираме орбитата на Земята в дълбокото минало. За щастие с радари и с други измервания нашите изчисления са толкова точни, че можем да проследим орбитата на Земята назад 100 милиона години в миналото с известна увереност.
Или поне така си мислехме, защото нова статия показва, че сме пренебрегнали гравитационния ефект на преминаващите звезди. Повечето звезди са твърде отдалечени, за да имат измерим ефект върху орбитата на Земята. Те дърпат нашия свят не повече от далечните ледени скали от Облака на Оорт. Но от време на време някоя звезда се приближава. Не достатъчно близо, за да хвърли нашата Слънчева система в хаос, но достатъчно, за да даде на слънчевите планети гравитационен тласък.
Последният близък подход е бил този на HD 7977. В момента звездата е на около 250 светлинни години, но преди 2,8 милиона години тя е преминала на 30 000 астрономични единици (AU) или на половин светлинна година от Слънцето. Звездата може да е преминала на 4000 AU от Слънцето. На по-голямо разстояние гравитационният ефект на HD 7977 би бил незначителен, но в по-близкия край на обхвата би бил значителен. Когато добавим това към изчислителната комбинация, несигурността на миналата орбита на Земята затруднява да бъдем уверени за повече от 50 милиона години.
И това има значително влияние върху палеоклиматичните изследвания. Например преди около 56 милиона години Земята е навлязла в период, известен като палеоцен-еоценски термален максимум, когато глобалните температури се покачили с 5 – 8°C. Орбиталните модели сочат, че орбитата на Земята е била особено ексцентрична през това време, което може да е основната причина. Но според новото изследване други фактори като геоложката активност може да са изиграли основна роля.
Изчислено е, че една звезда преминава в рамките на 10 000 AU от Слънцето на всеки около 20 милиона години. Това означава, че докато картографираме орбиталното движение на Земята по-дълбоко в миналото, трябва да търсим и ефекти, които може да са записани в звездите.
Вижте всички актуални новини от Standartnews.com